数理统计论文范文10篇-ag尊龙app

时间:2023-04-11 11:19:54

数理统计论文

数理统计论文范文篇1

少年时代的许宝騄受益于表姐夫徐传元(毕业于美国麻省理工学院)的指导。1928年,许宝騄考入燕京大学化学系,但对数学的浓厚兴趣,促使他改攻数学,并于1930年考入清华大学数学系。期间,深受熊庆来(1893—1969年)、孙光远(1900—1979年)和杨武之(1896—1973年)的教诲。1933年,以优异成绩获得理学士学位。1936年,通过赴英庚子赔款公费留学考试,进入伦敦大学学院(universitycollege)的高尔顿(francisgaldon,1822—1911)实验室和统计系学习数理统计学。1938年获得哲学博士学位,两年后又获得理学博士学位[2]。

1940年,许宝騄回到抗日烽火中的祖国,受聘为北京大学教授,在西南联合大学任教。1945年,应加州伯克利大学和哥伦比亚大学的联合邀请而前往美国。1947年10月,谢绝众多朋友的挽留,毅然回到中国,此后一直在北京大学任教。

许宝騄是中央研究院第一届当选的5名数学所院士之一。1955年当选为中国科学院学部委员。1979年美国《数理统计学年鉴》高度评价了他对概率论与数理统计学科所做出的卓越贡献。1981年和1983年,科学出版社和德国施普林格(springer2verlag)出版社分别出版了《许宝騄文集》和《许宝騄选集》。在美国斯坦福大学统计系走廊里至今悬挂着许宝騄的画像。

1984年,为了纪念许宝騄及推进我国统计学的发展,数学家钟开莱、郑清水、徐利治发起设立“许宝騄统计数学奖”,奖励35岁以下研究数理统计与理论统计的青年工作者。这是我国最高的数学奖项之一。

1问津概率论王国

1880年,英国学者傅兰雅(johnfryer,1839—1928)和中国数学家华蘅芳(1833—1902年)合译的《决疑数学》是传入我国的第一部概率论著作。由于种种因素,该书对我国的概率论发展没有产生多大影响。辛亥革命后,微积分、近世代数、近世几何学等相继进入我国的高等教育领域,而概率论尚未进入。1915年1月创刊的中国第一份现代科学杂志《科学》曾刊出一篇文章《最小二乘式》,此为我国第一篇概率论文章。后胡明复(1891—1927年)曾撰写《几率论》、《误差论》等一系列论文探讨概率统计的哲学问题[3]。由于受中国传统数学思想的影响,加之近代数学基础薄弱,随机数学在我国发展甚是缓慢。直到20世纪30年代,我国数学家褚一飞、刘炳震、许宝騄、钟开莱等才陆续发表概率论与数理统计的研究论文,拉开了中国对概率论与数理统计研究的序幕。

许宝騄痛感中国数学之落后,怀着满腔的报国热情,决心把自己的事业立足于祖国。由于概率论与数理统计在中国几乎是空白的学科领域,于是,许宝騄以惊人毅力和无私奉献精神为其奠定了基础,并为之振兴付出了毕生精力。

在实际工作及理论问题中,概率接近于1或0的随机事件具有重要意义。概率论的一个基本问题就是探索概率接近于1的规律,特别是大量独立或弱相依因素累积结果所发生的规律。大数定律就是研究这种规律的命题之一。许宝騄对大数定律进行了深入探讨。

强大数定律和弱大数定律取决于收敛的类型。第一个弱大数定律由雅可布·伯努利(jacobbernoulli,1654—1705)提出,刻画了大量经验观测中呈现的稳定性。后泊松(siméondenispoisson,1781—1840)又提出了一个条件更宽的陈述,即泊松大数定律。

切比雪夫(p.l.chebyshev,1821—1894)第一次严格地证明了伯努利大数定律,并把结果推广到泊松大数定律。1866年,切比雪夫给出著名的切比雪夫不等式,并由此导出切比雪夫大数定律。

第一个强大数定律由法国数学家博雷尔(emailborel,1871—1956)在1909年对伯努利试验场合建立。他证得若试验次数无限增加时,频率将趋于概率。博雷尔的工作激起了数学家沿这一崭新方向的一系列探索,其中尤以柯尔莫戈罗夫(a.h.kolmogorov,1903—1987)的研究最为卓著。他在1926年推导了弱大数定律成立的充分必要条件,后又对博雷尔提出的强大数定律给出了一般结果。

许宝騄进一步加强了强大数定律的结论。其结果为:设x1,x2,⋯,xn,⋯是独立同分布均值为零、方差有限的随机变量序列,任给ε>0,有σ∞n=1p1n|x1 x2 ⋯xn|>ε<∞证明是经过一个卷积的富立叶逆转,把问题转化为含有特征函数某个积分的分片估计,这需要具有相当深厚的数学功底和敏锐的数学眼光才能完成。由于推证较复杂,尽管已经得出关于矩的充要条件,但在刊出时删去了必要性的证明[4]。

概率论中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性的不同定义将导致不同的极限定理。许宝騄在“依分布收敛”、“依概率收敛”、“r2阶收敛”和“依概率1收敛”的基础上,创造性地提出“完全收敛性”概念,开辟了概率论极限理论研究的新局面。直到今天,对完全收敛性的讨论仍是一个有意义的课题,这就足以表明该文的开创性价值。正如许宝騄所说:“一篇论文不能因为获得发表就有了价值。其真正价值要看发表后被引用的状况来评价。”[1]许宝騄对中心极限定理也进行了较为深入的研究。“中心极限定理”这个术语是由波利亚(g.polya,1887—1985)1920年引入的。该定理断言在适当条件下,大量独立随机变量和的概率分布近似于正态分布。在长达两个世纪的时间内极限定理成了概率论的中心课题。

1733年,棣莫弗(a.demoivre,1667—1754)由二项分布的渐进分布推导出正态分布。较一般的极限定理由拉普拉斯(pierre2simonmarquisdelaplace,1749—1827)给出,但其证明不完善。

误差分析是概率论的生长点之一。如果把随机变量总和中的每项看作是小的“基本误差”,那么中心极限定理就为观察误差中正态分布的发生给出一个解释。19世纪初高斯(c.f.gauss,1777—1855)在研究测量误差时引进了正态分布,并发展了具有广泛应用的最小二乘法。

在许多数学家为给出中心极限定理严格证明所做的努力均告失败后,切比雪夫使用矩方法的尝试相当令人鼓舞。马尔科夫(a.a.markov,1856—1922)于1887年第一个用矩方法给出了中心极限定理的严格证明。切比雪夫的另一个弟子李雅普诺夫(a.m.lyapunov,1857—1918)则从一个全新角度去考察中心极限定理,引入特征函数这一有力工具,避免了矩方法所要求的高阶矩存在的苛刻条件,在1901年给出了定理的完善证明,其证明方法与现在素数理论中的方法相类似。特征函数实现了数学方法的革命,为极限定理的进一步精确化提供了条件。

一个从理论和应用上都应当关心的问题是,仅知道某个概率分布渐近正态分布是不够的,还必须知道换成正态分布后误差有多大。李雅普诺夫给出这个误差的一个上限。瑞典数学家克拉美(h.cramér,1893—1985)发现李雅普诺夫所给余数的估计在风险问题中是远远不够的,并于1928年改进了结果。1941年,贝莱(a.c.berry)再次改进了李雅普诺夫的结果。

许宝騄有一本翻破了的克拉美概率著作,书上几乎写满了批注。他认为该书包含了所有概率论的基础。1945年,许宝騄改进了克拉美定理和贝莱定理,并给出克拉美定理的一个初等证明[5]。他以特征函数为工具,通过12个引理,给出了上述定理的证明。但影响更深远的结果是他将相应的样本均值代之以样本方差。许宝騄说:“关于均值的渐近分布,已知结果如此之多。考尼斯(cornish)和费希尔(r.a.fisher,1890—1962)通过半不变量获得了逐步近似于任何随机变量分布的各项。若把考尼斯和费希尔的形式结果转化为一条渐近展开的数学定理,它能给出剩余项大小的阶。在本文中,样本方差就做到了这一步。”[5]

这里许宝騄第一个讨论了样本方差的渐近展开,给出余项阶的估计。他直接引进了一个新维数,用特征函数来近似随机向量的分布,其难点是用特征函数来近似两个高度相关的随机变量的分布。他对特征函数的应用已经达到炉火纯青的境界,在不少论文中对这一技巧信手拈来,应用自如。

许宝騄所采用的方法具有普遍意义,还可以用于解决样本高阶中心矩、样本相关系数及样本统计量的类似问题。他的这一工作在20世纪70年代以后引起了进一步的研究。此后,许宝騄开始研究费勒(w.feller,1906—1970)对中心极限定理一般形式的充要条件。1947年5月,他得到每行独立的无限小随机变量三角阵列的行和,依分布收敛于一给定的无穷可分律的充要条件。当时一些著名的概率专家,如柯尔莫戈罗夫、辛钦(a.ya.khintchine,1894—1959)、格涅坚科(b.v.gnedenko,1912—1995)、莱维(paullévy,1886—1971)和费勒等,都在寻找这一答案,所以许宝騄在给钟开莱的信中说,担心正在进行的工作会和别人相重复。

许宝騄的条件与格涅坚科的不同,后者的“两个尾巴”是并在一起的,而许宝騄则利用核(sint/t)3直接证明。但得知格涅坚科的研究成果已经发表时,许宝騄立即承认了其优先权[6]。因此,在格涅坚科和柯尔莫戈罗夫合著的相关专著英译本再版时,添加了许宝騄的这一论文作为附录。

20世纪50年代中期,许宝騄对马尔科夫过程产生了兴趣,他用分析的方法讨论了关于转移概率函数的可微性。这一工作暗示了分析结构和概率结构的内在联系,为进一步研究奠定了基础。

2涉足统计推断领域

贝叶斯(t.bayes,1702—1761)的论文《论机会学说问题的求解》可看作最早的一种统计推断程序。拉普拉斯和高斯等利用贝叶斯公式估计参数的研究,促使统计学摆脱观测数据的单纯描述而向强调推断的阶段过渡。

19世纪末,皮尔逊(k.pearson,1857—1936)明确指出,统计学不是研究样本本身而是要根据样本对总体进行推断,并引进一个分布族,包含正态分布及现在已知的一些重要非正态分布,还提出矩估计法,用来估计分布族中的参数[7]。皮尔逊所提出的检验拟合优度统计量,为大样本统计的先驱性工作。戈塞特(w.s.gosset,1876—1937)1908年导出的t分布,则开了小样本理论的先河。小样本理论强调样本必须从总体中随机抽取,从而使统计学研究对象从群体现象转变为随机现象。

20世纪20年代费希尔对现代数理统计学的形成和发展做出了卓越贡献。他发展了正态总体下种种统计量的抽样分布理论,建立了以最大似然估计为中心的点估计理论,创立了实验设计,并发展了相应的数据分析方法———方差分析。

1911年,皮尔逊应聘为伦敦大学学院优生学教授,并任生物统计系主任,而费希尔自1933年起任伦敦大学学院教授。他们共同建立和领导了一个有世界影响的数理统计学派,使伦敦大学学院的高尔顿实验室和统计系成为世界数理统计学的研究中心。

1936年许宝騄来到高尔顿实验室和统计系学习时,小皮尔逊(e.s.person,1895—1980)刚继任父亲的领导工作,任统计系主任;费希尔任高尔顿实验室主任;现代统计学家奈曼(j.neyman,1894—1981)任统计系教授;一些著名学者也不断来访,如美国的多元分析专家郝太林(h.hotelling,1895—1973)、频率曲线专家克莱格(c.c.craig)和概率专家费勒等。频频接触这些“世界级”人物,其发现一般原理、发现科学实质的深邃思想,其才气横溢、思如泉涌的大家风范,其刻苦钻研、锲而不舍的科学精神,都给天资聪慧的许宝騄留下了深刻印象。这对其概率统计思想的形成和发展产生了很大影响,他一生的科学贡献与这段经历是密切相关的。

在奈曼.皮尔逊的假设检验理论建立之初,将这一方法应用于线性模型的线性假设检验问题是一个很有意义的研究方向。费希尔对线性模型的线性假设发展了f检验(起初他称之为z检验,其学生改进为f检验,用fisher的第一个字母命名),但这种检验有何优越性或是否存在比它更优越的检验,尚需进一步探讨。奈曼2皮尔逊理论提供了以比较功效函数为基础的方法,涉及到很复杂的精细分析问题,在当时的统计队伍中,具备这样数学素质的为数甚少,许宝騄正是其中的突出者。他敏锐地意识到该课题的重要性,并随之进行了精心研究,发表了一系列相关论文,取得了突破性进展,从而在国际数理统计界争得一席之地。

28岁的许宝騄在奈曼和皮尔逊《统计研究报告》的第二卷发表了关于数理统计学的第一篇论文《studentt分布理论用于两样本问题》,研究了所谓behrens2fisher问题。[8]他创造性地引进统计量u=(x-y)2(a1s21 a2s22)

其中a1>0,a2>0为常数,来讨论以|u|>c为否定域的检验。许宝騄通过把u的密度函数展开成幂级数,研究了否定域|u|>c的势函数对参数的依赖关系。其主要内容是计算上述u检验的功效函数,并研究该检验在种种情况下的表现[9]。这是一个精确的(不是渐进的)分析,当代统计学家谢非(h.scheffe)称之为“数学严密性的范本”。据许宝騄的研究结果所给出的方法后被称为“许方法”。

1941年,许宝騄首次证明了方差分析中的f检验在功效函数观点下的优越性。方差分析中任一个效应有无的检验,都可以化为典则形式之下的假设。他证得若假设水平α的检验不是f检验,其功效函数在任一球面上保持常数,则此检验的功效必小于水平α的f检验的功效[10]。这是一元线性假设似然比检验的第一个优良性质,其本质上是对任何特定多于一个参数值假设的第一个非局部的优良性质。许宝騄考察了高斯2马尔科夫模型中方差的最优估计问题,得到了样本方差为总体方差的最优二次无偏估计的充要条件。后来的研究表明,许宝騄的结果是近年来研究方差分量模型和方差最优二次估计的起点。

许宝騄证明了似然比检验在所有功效函数仅依赖于一个非中心参数的所有检验中是一致最强的。这个条件等价于势函数在某一类自然变换下的不变性,由此开创了假设检验的两个发展方向:(1)将所得形式推广到多元问题(郝太林的t2及多元相关系数);(2)提供了获得所有相似检验的新方法。

正是在许宝騄的建议下,其学生席玛卡(j.b.simaika)和莱曼(e.l.lehmann)将这个方法用于其他问题,后莱曼和谢飞形成了完备性的概念。

3推进多元分析发展

皮尔逊的数理统计学建立在自然总体的“大样本”基础上,而费希尔则着重处理受控实验中“小样本”的统计分析。后者在数学上占有优势,频频对前者发起攻击,尖锐地批评皮尔逊所提出的x2检验。

奈曼和小皮尔逊在1933年发表了关于假设检验的论文,把检验问题作为一个数学最优化问题来处理,发展了费希尔的研究工作。由于费希尔对皮尔逊有成见,因而对奈曼和小皮尔逊的研究也不以为然,甚至称其编辑的《统计学研究通报》是“一堆破烂货”。由于和费希尔的矛盾,奈曼感到在英国难以发展,于1938年4月应聘为美国加州伯克利大学数学系教授,并筹建了统计实验室。

加州伯克利大学统计实验室在二战后逐步取代了伦敦大学学院的统计系地位,成为世界数理统计学的中心。相比之下,当时苏联在概率论领域虽领先于世界,但在数理统计领域远远落后于美国。在20世纪50年代大力倡导“学习苏联”时期,中国统计学也长时期得不到发展。

奈曼犹如伯乐,慧眼识俊才。他非常器重许宝騄,认为许宝騄是新一代数理统计学家中的佼佼者,一度选定其为接班人。1945年,奈曼邀请许宝騄参加了第一届伯克利概率统计讨论会,并聘请他为伯克利统计实验室教师。校方仅聘许宝騄为讲师,奈曼为此大声疾呼,表示了强烈不满。1946年秋,许宝騄开始在教堂山(chapelhill)教学,奈曼还曾去看过他。当许宝騄回国时,奈曼一再挽留,想把他争回自己的麾下。回国后,许宝騄也与奈曼保持了多年的联系。许宝騄对科学所做的贡献以及孜孜以求的好学精神,是与奈曼的教诲和影响分不开的。

如果个体的观测数据能表示为p维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法称为多元统计分析。主要多元分析方法有:多重回归分析、判别分析、聚类分析、对应分析、典型相关分析、多元方差分析等。许宝騄在哥伦比亚大学和教堂山讲授多元统计分析,培养学生从事这一领域的研究。

自20世纪30年代起,费希尔、郝太林、许宝騄等做出了一系列奠基性的工作,使多元统计分析在理论上得到迅速发展。1938年到1945年,许宝騄所发表的相关论文一直处在多元统计分析理论的前沿。在多元分析假设检验理论中,许宝騄最先讨论了优良性,是奈曼-皮尔逊的假设检验理论在多元分析中应用的先导。他推进了矩阵论在数理统计理论中的应用。许宝騄把矩阵论中处理问题的方法引进了数理统计的研究,实质上这是一个长方阵在某一变换群下的标准型。有了线性模型的法式,使估计和假设检验问题变得十分简明。

费希尔创立的“n维几何”方法,使数学家们获得了一些重要统计量的精确分布。典型例子是1928年维夏特(j.wishart)导出了任意维正态样本全体二阶矩的联合分布———维夏特分布。

不少学者给出维夏特分布的不同证明。1939年,许宝騄利用数学归纳法推导出维夏特分布。他假定对n-1,p-1成立来推导对n,p的密度函数。除了密度函数中的矩阵外,还需要一个(p-1)维的正态向量和一个n维的正态变量,在证明过程中所需的分析推导仅仅是n维向量模的平方是x2n分布[11]。专家们一致认为许宝騄的推导方法是最优美的一个。

文中许宝騄的另一个杰作就是得到了现今所称的许氏公式:当n≥p≥1时,有

∫⋯∫f(x′x)dxn×p=πnp2-p4(p-1)πp-1j=oγ(n-j2)∫a>0⋯∫|a|n-p-12f(a)da

该公式是处理20世纪80年代所形成的椭球等高分布统计量的有力工具。

多元分析中一个基本分布是关于随机正定阵相对特征根的分布。线性模型中线性假设的检验问题,都与这些特征根有关。若正定随机矩阵a和b相互独立,各自遵从维夏特分布w(m,σp×p)和w(n,σ),且m≥p,n≥p,θ1≥⋯≥θp≥0表示|a-θ(a b)|=0

的p个根,寻求θ1,⋯,θp的联合密度是一个重要研究课题。在20世纪30年代末,许宝騄和一些著名统计学家,都对其进行了探讨。在众多方法中,许宝騄的方法严密而清晰,他以矩阵微分为工具,计算了一些复杂变换的雅可比行列式,而导出相应的分布[12]。

这个方法的难点是计算雅可比行列式,许宝騄在文章中给出了任意阶的雅可比行列式结果,并证明了3阶行列式情形。其学生安德逊(t.w.anderson)详细介绍了这一工作,认为某些雅可比行列式的计算是许宝騄的杰作。

许宝騄把数学家分成三流。第一流的数学家是天才,他们能开创新的领域,如柯尔莫哥洛夫、诺依曼(johnvonneumann,1903—1957)、维纳(norbertwiener,1894—1964)等。第二流数学家是靠刻苦学习而成功的。他们认真消化整理前人的东西,在此基础上有所创造和发现,辛钦就属于这一类。第三流的数学家只是在某个问题上有所贡献,不能像第二流的那样系统工作。剩下的就是不入流的数学家了。他认为自己没有才能,所有成就完全是靠刻苦学习而获得。

“三十功名尘与土,八千里路云和月”。许宝騄对科学研究的态度和精神永远值得我们借鉴和学习。

参考文献

1吴文俊.世界著名数学家传记[m].北京:科学出版社,1990.

2江泽涵,段学复.深切怀念许宝騄教授[j].数学的实践与认识,1980,(3):1—3.

3张奠宙.中国近现代数学的发展[m].石家庄:河北科学技术出版社,2000.

4pao-luhsu,pleteconvergenceandthelawoflargenumber[j].proc.nat.acad.sci.u.s.a.,1947,33:25—31.

5pao-luhsu.theapproximatedistributionofthemeanandvarianceofasampleofindependentvariables[j].ann.math.statist,1945,16:1—29.

6钟开莱.许宝騄在概率论方面的工作[j].数学的实践与认识,1980,(3):12—15.

7陈希孺.数理统计学简史[m].长沙:湖南教育出版社,2005.

8morrisle,richardao.randomquotientsandthebehrens2fisherproblem[j].annmathstatist,1972,43:1852—1860.

9pao-luhsu.contributionstothetwo-sampleproblemandthetheoryofthe“studentpst-test[j].statist.res.mem,1938,2:1—24.

10pao-luhsu.onthebestquadraticestimateofthevariance[j].statist.res.mem,1938,2:91—104.

11pao-luhsu.analysisofvariancefromthepowerfunctionstandpoint[j].biometrika,1941,32:62—69.

12pao-luhsu.anewproofofthejointproductmomentdistributions[j].proc.cambrigephilos.soc.,1939,35:336—338.

数理统计论文范文篇2

关键词:统计学;教学模式;excel

进入21世纪,随着我国市场化步伐的加快,社会对新知识的需求日益增加,无论是国民经济管理,还是公司企业乃至个人的经营、投资决策,都越来越依赖于数量分析,依赖于统计方法,统计方法已成为管理、经贸、金融等许多学科领域科学研究的重要方法。教育部也将《统计学》课程列为财经类专业本、专科专业的核心必修课程之一。力图通过《统计学》的学习,使学生掌握探索各学科内在的数量规律性,并用这种规律性的解释来研究各学科内在的规律。同时,由于统计学所倡导的尊重客观实事,通过调查研究用实事说话,这也有利于培养学生的实事求是的学习、工作和科学研究精神

一、《统计学》课程教学面临的挑战

1、内容日益丰富。长期以来,在我国存在两门相互独立的统计学——数理统计学和社会经济统计学,分别隶属于数学学科和经济学学科。20世纪80年代以来,建立包括数理统计学和社会经济统计学在内的大统计学,逐步成为我国统计学界的共识。1992年11月,国家技术监督局正式批准统计学上升为一级学科。国家颁布的学科分类标准已将统计学单列为一级学科。随着大统计学思想的建立和统计学在实质学科中的应用的需要,大多数学校和老师在财经类专业的本、专科专业《统计学》教学过程中,除了保留社会经济统计学原理中仍有现实意义的内容,如统计学的研究对象方法、统计的基本概念、统计数据的搜集整理、平均及变异指标、总量指标、相对指标、抽样调查、时间序列、统计指数等;同时也系统的充实了统计推断的内容,如:统计数据的分布特征、假设检验、方差分析、相关与回归分析、统计决策等。这一变化使得《统计学》的内容更适合相关实质学科的发展需要。

2、学生的学习难度加大。首先、结合《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。对于财经类专业的本、专科专业的学生来说,本身的专业课学习负担已不轻。其次、对于财经类专业的本、专科专业的学生来说,由于其本专业的课程体系要求,使得学生的数学或者数理统计的基础不是特别好,对于专科学生来说更不用说,推断统计将是他们学习的困难。再说,《统计学》作为专业基础课,一般安排在一年级或二年级第一学期,在这个学习时段也是大多数专科生和本科生忙于计算机课程和英语课程的考证时段。如果以牺牲授课内容和降低要求来减轻学生的学习负担,显然有悖于《统计学》课程的教学和相关专业的发展要求。所有这一切对于学生学好这一课程面临的困难可想而知。

3、教师的教学难度加大。授课内容越来越丰富;课程难度太大可能导致学生兴趣下降;在倡导学生自主性学习的背景下,授课时数大为减少(一般安排一个学期共17~19教学周,每周2~3课时);高等教育扩招后,由于师资力量一时没有跟上,大多数学校,授课班级学生人数越来越多,一个教师跨越不同专业授课不再新鲜。这要求授课教师必须深刻领会授课内容的核心和相互关系,学会控制和驾驭课堂教学,学会激发学生的兴趣,注重统计学在不同专业领域的具体应用等等。作为这门学科的授课教师特别需要认真考虑该怎么办?

二、《统计学》教学的发展趋势分析

1、统计学从数学技巧转向数据分析的训练。在计算机及计算机网络非常普及的今天,统计计算技术不再是统计学教学的重点了。统计思想、统计应用才应该是重点。现代统计方法的实际应用离不开现代信息处理技术。统计软件的使用,不仅使统计数据的计算和显示变得简单、准确,而且使统计教学由繁琐抽象变得简单轻松、由枯燥乏味变得趣味盎然。所以,在统计教学过程中,大量的内容只需要给学生讲清楚统计基本思想、计算的原理和正确应用的条件、正确解读计算的结果,而对大量复杂具体的计算可以交给计算机去完成。

比如方差分析,手工计算量非常大,没有计算机软件的支撑,是很难教学实际问题分析的。现在我们只要讲清楚方差分析要做什么,为什么方差分析要解决的中心问题是判断有无条件误差,而原假设又是k种不同水平下总体的理论均值是否相等,检验结果表示什么等就可以了,大计算量的工作让计算机去完成。

2、通过统计实践学习统计。也就是以学生为中心,通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目、利用假期时间,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。

比如依同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。

三、基于excel的《统计学》教学设想

如何从烦琐的数理统计技巧转向数据处理的训练,同时还要使学生容易掌握并有机会辅之于实践。教师的导向是第一位的,要求必须选择容易获得而且普及性比较强的统计分析软件,并在课堂教学和引导学生实践中广泛采用。

(一)微软公司开发的excel软件无疑是我们最好的选择

专业的统计分析软件spss、sas、bmdp、systat其功能固然强大,统计分析的专业性、权威性不可否认,但是对于没有开设统计学专业的院校这些软件并不常用,如果学生要进行自主性学习也比较难以找到相应的工具,此外专业统计分析软件的英文操作界面,也让中国人用起来不是很顺手。微软公司开发的excel软件作为一款优秀的表格软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握。在windows操作系统极为流行的今天,excel也是随处可见。对于《统计学》这门课程而言,利用excel提供的统计函数和分析工具,结合电子表格技术,已能满足统计方面的要求。

(二)基于excel的《统计学》教学设想

1、在教学内容上,依据excel的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。比如传统的统计学原理教学过程中,对统计数据的搜集主要强调统计报表制度,在excel环境应该更注重抽样推断,excel提供的随机抽样工具使得抽样调查不再是十分复杂的技术,统计图也可以被广泛运用于对数据的描述;再比如现有统计学教材很多都讲根据整理的数据计算平均数时,都用加权平均的方法,当用组距式变量数列计算平均数时,用组中值作为各组的代表值进行计算。我们知道,组中值作为各组的代表值是假定各组变量值在组内是均匀分布的,如果实际数据与这一假定相吻合,计算结果比较准确,否则误差比较大。事实上实际数据往往就不是均匀分布的,因此用组中值计算的平均数都是近似的,而且相同资料编制的不同变量数列计算的平均数还不相等。其实为了编制变量数列,我们必须输入原始数据,excel的有关程序可以得到准确平均数,哪里还有必要按加权算术平均的方法计算近似的平均数呢?那么有没有必要编制变量数列、特别是组距式变量数列呢?有没有必要按加权的方法计算平均数呢?我们认为有必要,但是组距式变量数列的主要功能不再是提供计算资料了,而是用于表现资料的分布状况和进行分析用;加权平均方法主要是介绍和要求学生掌握加权平均的思想,用于综合评价分析中。

2、案例教学成为《统计学》课程的重要内容。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。结合学生所学专业精选案例教学,比如对于金融专业的学生可以设计用几何平均数计算投资的平均收益率、运用标志变异指标考察投资组合的风险大小等。对于经管专业的学生,精选抽样推断、假设检验、方差分析对于控制产品质量,经营决策等方面的案例,深入浅出地介绍这些方法的基本思想、并用excel进行分析。既激发了学生的兴趣、扩大了学生的视野,也使统计学的课堂不再是教师一块黑板、一支粉笔、一本教材、一张嘴巴就能将一门专业课程从头讲到尾。

3、改革考试方式和内容,合理评定学生成绩。考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养新世纪高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

参考文献:

[1]谢安邦.高等教育学[m].北京:高等教育出版社,1999.

[2]贾俊平.统计学[m].北京:中国人民大学出版社,2000.

数理统计论文范文篇3

《高等教育心理学》提到,学习兴趣是学生心理上的一种学习需要,而学习需要是学习动机的主要因素,学习动机则是学生进行学习的内驱力。数学作为文化基础课,多数学生认为数学课抽象、枯燥无味,无新鲜感且无应用价值。激发起学生学习的兴趣,这样的教学会有高的教学质量。因此在概率论的教学过程中,要始终注意培养学生学习的兴趣,使学生既学到必要的知识,又享受到一定的学习乐趣,达到提高教学质量的目的。各门课程的特点不同,培养学生学习兴趣的途径和方法也不尽相同,但是深入钻研教材,根据教材的内容和特点,挖出潜在的有利于培养学生学习兴趣的积极因素并加以充分利用,这一点是共同的,是当前提高教学质量的一个重要方面,可能还是提高教学质量的“治本”的方面。由于《概率论与数理统计》所研究的问题渗透到我们生活的方方面面,每一个理论都有其直观背景。因此,在教学中,应该致力于从多方面入手,去激发学生的兴趣,使学生在体会每个基本概念、定理和公式的产生过程中,掌握概率论与数理统计解题的思想和方法。具体方法有:

1.安排实验活动

数学教育家弗赖登塔尔提出,与其说让学生学习数学不如让学生学习“数学化”,学习数学不能仅满足于记住结论,更要注重数学知识的发生过程。针对概率论与数理统计这门课的特点,在教学中适当地安排实验活动让学生通过实验发现某种偶然性后面所隐藏的必然性,从直观背景中了解某些理论产生的过程。如在讲授几何概率时,可以让学生做一下著名的蒲丰实验;在讲授随机事件的独立性时,可以让学生做一下著名的德梅尔掷骰子实验等。安排实验化的教学活动,既可以帮助学生理解基本概念,掌握概率论解决问题的方法,又能大大激发学生学习这门课的兴趣,有利于培养学生的探索精神,提高学习效率。

2.采用疑问式教学法

疑问式教学是指通过提出疑问、分析疑问、解决疑问而进行教学的方法,该方法有利于养成学员积极思考、新颖好奇、敢于批判、勇于超越等良好的心理品质,也是激发学生兴趣的有效手段。在教学中要全面实施这一方法要善于设疑,“读书无疑者,须教有疑”。好的疑问能激发兴趣,促进思考,而不好的疑问不仅不能引发兴趣,可能适得其反。善于设疑就是设置问题要自然、恰到好处,不能故作技巧。

3.组建课外兴趣小组

培养学生的综合素质和创新能力,仅靠课内教学是不可能完全实现的。在教学中,要紧紧围绕教学目标,把课内教学和课外活动作为一个整体来考虑,进行优化设计,形成合力。为此,有必要组建由教师引导,学生自主成立的概率论与数理统计课外兴趣小组。小组活动的宗旨,是利用课余时间,通过定期组织活动,激发人家的学习兴趣,探讨热点、难点问题,加深对理论知识的学习和理解,拓宽知识面,锻炼思考问题和研究问题的能力。组织课外兴趣小组这种方法对于提高学习效果,提高学员综合素质和创新能力有显著成效。

二、教学中要突出一个“活”字

1.教学案例要“活”,注重学科实际

概率论与数理统计是一门有着广泛应用的数学学科,因此在教学中我们应准确把握这门课与学生所学专业的结合点,突出其应用性。在概率论与数理统计的教学中,很多高校教师是文理课概率论与数理统计课程都带,这就涉及到课程实例的选择问题。在教学中应结合学生的专业知识,调整教学实例。对文理科的实例分别对待,因为它们涉及到一些专业术语的问题。在讲授过程中,将统计理论与实际问题相结合,培养学生用所学的知识去解决具体实际

问题的能力及理论联系实际的作风,从而使学生进一步深化理解统计中的基本概念和基本原理。

2.改变灌注式教学,发展互动式教学

传统的教学方式是知识传授型的,教师是教学的主体,只重视教的过程,忽视了教学是教与学互动的过程。教师在课堂上满堂灌、注入式的教学方法不能充分调动学生学习的主动性,没有立足于培养学生的学习能力和不同学生的个性发展。现代教学方法主要是挖掘学生的学习潜能,以最大限度地发挥和发展学生的聪明才智为追求目标。以教师的系统讲解为主是目前教师多采用的教学方法,它虽能使学生在单位时间内迅速系统地掌握较多的数学基础知识和技能,但整个过程由教师直接控制着,学生实际上处于一种被动接受教师所提供知识的地位,学生学习的主动性、创造性极易受到忽视或限制。因此,在高校教学中,教学方法应突出一个“活”字,根据不同的内容选择不同的教学方法,采取多法并用的教学模式。教师在深入理解教材和了解学生的基础上,用“启发”形式写出自学提纲,以课外作业的形式布置下去。在上课时,或是请学生们讨论本节的知识要点,或是请学生讲解本节的内容,最后由教师进行有针对性的指导,全面进行教与学的评价。这种方法的主导思想是突出教学过程中师生的双边活动,提高学生的自学能力,从而变以前被动接受为积极主动参与整个教学过程,培养了学生分析、辩论、理论联系实际、与他人合作等综合能力。总之,在概率论与数理统计教学中,教师“施教之功,贵在引导”,即引导学生去发现生活中的随机现象所隐藏的规律性,掌握概率论与数理统计研究问题的方法。

三、注重现代化信息技术的教学应用

教学效果不仅取决于教材的质量、教师的学术水平,在很大程度上,也取决于教师所运用的教学手段。要真正建立起先进、科学的创新教学模式,必须通过系统优化教学设计,针对不同的教学内容,采取各种有效的教学方法,这就必须借助于现代化信息技术。现代化信息技术对教学的意义表现在:

1.动画演示。多媒体具有色彩斑斓的二维动画显示,能演示一般课堂教学难以表达的内容。例如,借助于计算机,可对概率论与数理统计中的一些随机现象进行模拟。对诸如分布的性质、分布之间的关系可用图形的方式进行演示。

2.高效性。多媒体教学使教学内容以崭新的而貌呈现在学生的面前,使学生易于接受和理解,再加上计算机本身的功能,能设计出形象的画和舒服的学习气氛,使学生在轻松活泼的氛围中获得丰富的知识。在概率论与数

理统计的教学中,利用对某些试验进行模拟、演示随机现象的统计规律性,能有效地调动学生的听觉和视觉。改变传统的口授、板书传授知识的方式,使题目中静止的内容运动起来,使学生能充分地观察到运动的全貌、增强了学生的观察和分析能力、提高了教学质量。

3.自由性。在教学实践中,不仅仅是教师要用计算机,同时还要鼓励学生尽可能使用计算机来处理数据,进行模拟活动。多媒体教学不仅可在规定的时间内教学外,还可给学生自由选择学习的时间和内容并使枯燥无味的习题变得有趣、有利于知识的巩固,更深刻地体会统计的思想和概率的意义。

四、重视“辩误”的教学方法

许多学生由于对概念缺乏理解,因而在解题时常会出现许多共同的一些常规的错误。在教学中,教师应当组织一些有典型意义的错误题解,从而学生在对比分析中正确理解概率统计中的概念,掌握正确的解题方法。比如有许多学生认为,不同的随机变量,它们的分布函数一定不同;同分布的随机变量一定相等;两个一维正态变量合在一起就一定是一个一维正态随机变量;若ε与η不相互独立,则ε2与η2就一定不相互独立等等,就是对概念缺乏正确而全面的理解。教师应该结合恰当的例子加以说明,使学生纠正这些错误观念。“辨误”教学能给学生留下深刻的印象引导学生从正反两方面而吸取经验教训,加深对概念的理解,从而更好的理解这一学科领域。

参考文献:

[1]杨金英.在概率论与数理统计教学中应突出实用性和趣味性[j].呼伦贝尔学院学报,2002,10,(4).

[2]赵晓芹,王国宝.浅谈概率论与数理统计的教学[j].数学理论与应用2005,25,(4).

[3]赵姝淳.概率论与数理统计创新教学模式初探[j].高等教育研究学报,2001,24,(1).

[4]陈建兰,吴明,孙伟良.概率论与数理统计教学改革的探讨[j].杭州电子科技大学学报2005,1,(2).

数理统计论文范文篇4

利用现代化学习工具学习当今社会发展所需要的知识是时代的要求,因此应转变教育思想和更新教育观念,改变以往的教学方式、学习方式和学习内容,探索适应现代社会、经济、科技及文化发展的教育观念和人才培养模式,形成培养适合21世纪所需要人才的教学体系.医药院校的数学应以应用为主要目的,应改变以掌握基本知识、基本理论及基本方法为目的的方式,把教学重点转移到讲解数理统计学概念、思考方法、形成及应用背景等,引导学生思考数理统计学的思维特征,理解数理统计学思想,引导学生应用数理统计学方法解决实际问题,以达到学以致用的目的.学好和用好医药数理统计学并不需要高深的数学知识,而是要促使学生在学习数理统计学的时候改变思维模式,使学生从医药学的形象思维模式向数理统计学的抽象思维和逻辑推断模式转变,并结合教材中例题的讲解、学生自身实例资料的分析及作业的批阅使学生理解和掌握统计学中的基本概念、基本方法、统计符号及公式等.

2精简和更新教学内容

在教学内容方面做到突出实用性,适当地减少或减弱概率论部分的理论性和难度,以直观、趣味和易于理解的方式把概率论作为数理统计的基础知识加以介绍.在假设检验部分注意阐述数理统计方法的思想、应用的背景及应用中所需的条件,重点讲解假设检验应该如何选取原假设和备择假设,如何对得出的结论进行合理的解释;在参数估计部分着重地讲解参数估计在实际应用中的重要性、合理性及应用中应注意的问题,区间估计中置信区间的理解及单侧置信限在应用中的意义等;在方差分析部分讲清楚引进方差分析的意义、假设检验的方法对多个总体进行多次t检验时的缺点、方差分析应用的条件及合理解释检验结果等;在回归分析部分注意阐述量与量之间的关系、回归方程的理论意义及对回归方程结果在应用中的解释等.目前spss软件是国际医学论文中应用最广泛的统计软件[2],国内的大部分医学期刊也要求论文数据统计分析要应用统计软件处理,统计检验结果要用p值来表示,更要求学生了解统计软件的使用方法,做到正确使用统计软件.

3互动式的教学方法培养应用、创新型人才

传统的教学方式是知识传授型教学,即教师在课堂上灌输知识,在有限的时间内按教学大纲要求把大量的教学内容尽可能地讲授完毕,不能有效地调动学生对学习的主动性,忽视学生应用能力的发展,结果导致学生把主要精力投入到统计计算上,很难有时间去深入分析统计结果.互动式教学方法要求教师在教学中充分发挥教师的主导作用,同时让学生处于教学的中心,在加强课堂讨论的同时,由教员归纳总结,充分调动学生的学习兴趣,提高学生的主动性和创造性.统计学应用能力的培养主要指可正确选择和应用统计分析方法解决医药学科学研究和医药工作中的实际问题[3].为了避免学生滥用及错用统计方法,教师要重点讲清各种方法的适用条件及特点.在考试方法上亦采用开卷考试,使学生不再花大量时间去推敲和死记那些复杂的公式,不再难于分清和理解符号及公式.通过几年来的改革实践,发现上述教学内容、方法及手段的改革增强了学生的学习兴趣,使学生真正体会到数理统计学的内容在医药及日常生活中的应用价值,激发学生的创造性思维,取得了良好的效果.

[参考文献]

[1]刘定远.医药数理统计方法[m].第3版.北京:人民卫生出版社,1999.20.

[2]王锐,陈长生,徐勇勇,等.统计软件spss教学的经验与体会[j].西北医学教育,2004,12(5):425.

数理统计论文范文篇5

医药数理统计方法是药学专业的基础课,是数学基础课中应用性最强的课程,是研究随机现象的科学方法.它的思考方法与学生过去接触过的学科不同,因此学习它时需改变以往的思考方式.目前,延边大学药学院采用的数理统计教材《医药数理统计方法》[1]是卫生部规划教材(1999年第3版),其内容较为陈旧,方法简单,特别是随着计算机的普及与发展及在统计学中的广泛应用,使原有教材内容处于过时状态.延边大学药学院医药数理统计方法课程的教学时间仅为30学时,教师若按教材内容用传统的教学方法讲课,学生较难学到实用的统计知识和方法.为此,延边大学基础医学院数理与计算机教研室在教学中进行了多方面的改革.

1转变教育观念

利用现代化学习工具学习当今社会发展所需要的知识是时代的要求,因此应转变教育思想和更新教育观念,改变以往的教学方式、学习方式和学习内容,探索适应现代社会、经济、科技及文化发展的教育观念和人才培养模式,形成培养适合21世纪所需要人才的教学体系.医药院校的数学应以应用为主要目的,应改变以掌握基本知识、基本理论及基本方法为目的的方式,把教学重点转移到讲解数理统计学概念、思考方法、形成及应用背景等,引导学生思考数理统计学的思维特征,理解数理统计学思想,引导学生应用数理统计学方法解决实际问题,以达到学以致用的目的.学好和用好医药数理统计学并不需要高深的数学知识,而是要促使学生在学习数理统计学的时候改变思维模式,使学生从医药学的形象思维模式向数理统计学的抽象思维和逻辑推断模式转变,并结合教材中例题的讲解、学生自身实例资料的分析及作业的批阅使学生理解和掌握统计学中的基本概念、基本方法、统计符号及公式等.

2精简和更新教学内容

在教学内容方面做到突出实用性,适当地减少或减弱概率论部分的理论性和难度,以直观、趣味和易于理解的方式把概率论作为数理统计的基础知识加以介绍.在假设检验部分注意阐述数理统计方法的思想、应用的背景及应用中所需的条件,重点讲解假设检验应该如何选取原假设和备择假设,如何对得出的结论进行合理的解释;在参数估计部分着重地讲解参数估计在实际应用中的重要性、合理性及应用中应注意的问题,区间估计中置信区间的理解及单侧置信限在应用中的意义等;在方差分析部分讲清楚引进方差分析的意义、假设检验的方法对多个总体进行多次t检验时的缺点、方差分析应用的条件及合理解释检验结果等;在回归分析部分注意阐述量与量之间的关系、回归方程的理论意义及对回归方程结果在应用中的解释等.目前spss软件是国际医学论文中应用最广泛的统计软件[2],国内的大部分医学期刊也要求论文数据统计分析要应用统计软件处理,统计检验结果要用p值来表示,更要求学生了解统计软件的使用方法,做到正确使用统计软件.

3互动式的教学方法培养应用、创新型人才

传统的教学方式是知识传授型教学,即教师在课堂上灌输知识,在有限的时间内按教学大纲要求把大量的教学内容尽可能地讲授完毕,不能有效地调动学生对学习的主动性,忽视学生应用能力的发展,结果导致学生把主要精力投入到统计计算上,很难有时间去深入分析统计结果.互动式教学方法要求教师在教学中充分发挥教师的主导作用,同时让学生处于教学的中心,在加强课堂讨论的同时,由教员归纳总结,充分调动学生的学习兴趣,提高学生的主动性和创造性.统计学应用能力的培养主要指可正确选择和应用统计分析方法解决医药学科学研究和医药工作中的实际问题[3].为了避免学生滥用及错用统计方法,教师要重点讲清各种方法的适用条件及特点.在考试方法上亦采用开卷考试,使学生不再花大量时间去推敲和死记那些复杂的公式,不再难于分清和理解符号及公式.通过几年来的改革实践,发现上述教学内容、方法及手段的改革增强了学生的学习兴趣,使学生真正体会到数理统计学的内容在医药及日常生活中的应用价值,激发学生的创造性思维,取得了良好的效果.

[参考文献]

[1]刘定远.医药数理统计方法[m].第3版.北京:人民卫生出版社,1999.20.

数理统计论文范文篇6

(一)数理统计的主要特点

数理统计就是通过对随机现象有限次的观测或试验所得数据进行归纳,找出这有限数据的内在数量规律性,并据此对整体相应现象的数量规律性做出推断或判断的一门学科。概括起来有如下几方面的特点:一是随机性,就是说数理统计的研究对象应当具有随机性,确定性现象不是数理统计所要研究的内容。二是有限性,就是说数理统计据以研究的随机现象数量表现的次数是有限的。三是数量性,即数理统计以研究随机现象的数量规律性为主,而对随机现象质的研究为次。四是采用的研究方法主要为归纳法。最后,数理统计通过对小样本的研究以达到对整体的推断都具有一定的概率可靠性。用样本推断总体误差的存在是客观的,但是数理统计不仅重在研究误差的大小,还指出误差发生的可能性的大小。

从数理统计的学科特征来看,数理统计是应用数学中最重要、最活跃的学科之一。由此可见!数理统计从学科划分来说,应属于数学学科,但是其重在应用!而不是纯数学理论或方法的研究,故其采用的方法也就重在归纳法,而不是数学的演绎法。

综上所述,数理统计的主要特点可以用一句话概括为、数理统计是一门对随机现象进行有限次的观测或试验的结果进行数量研究,并依之对总体的数量规律性做出具有一定可靠性推断的应用数学学科。

(二)统计学的主要特点

统计学是一门收集、整理和分析统计数据的方法论科学,其目的在于探索数据的内在数量规律性,以达到对客观事物的科学认识。

统计学从其研究的范围来说有三大领域:数据的收集$数据的整理和数据的分析。首先,这三大领域随着统计学的不断发展,已很难分辨出哪个领域更重要些。也许有很多人认为数据的分析要相对重要些。在对1900年和1910年美国两次农业普查资料进行分析时,列宁曾指出:“全部问题,任务的全部困难在于,如何综合这些资料,才能确切地从政治上经济上说明不同种类或类型的农户的整个情况。”这足见数据整理的重要性。近年来困扰我国统计研究的并不是数据的分析方法,而是缺少充分真实有效的统计数据,造成无法用数据去检验或证实相应的经济理论、经济模型和经济政策。数据收集的重要性可见一斑。其次,统计学是一门方法论科学。长期以来,人们一直认为在这众多的方法中,统计研究的基本方法是大量观察法、统计指标法、统计分组法和模型推断法。特别是大量观察法更成为统计学最重要的基本特征方法之一,也可以说这是统计学与数理统计的根本区别之一,否则,统计学也就真的成了现代西方数理统计学了。随着统计学由早期的纯粹描述统计不断拓展为描述统计与推断统计并重,直至有的学者认为现代统计学应该以推断统计为主,描述统计为辅,暂且不论这种观点是否有不妥之处,但可足见推断统计学已在现代社会生活中起到举足轻重的作用。事实上,推断统计已成为现代统计学的基本特征之一。再次,统计学从其成为一门科学的那一天起,就把对现象数量方面的研究作为自己的基本特征,但是,同时强调要以对现象的定性认识为基础。

(三)数理统计与统计学的比较

通过上述对数理统计与统计学特点的分析,可以把数理统计与统计学的主要异同归纳为如下几方面:

1.从其研究目的来看,两者都重在揭示总体现象的数量规律性,而统计学更声称要以对总体现象的定性认识为基础。

2.从其研究的途径来看,数理统计希望通过对总体部分个体的数量特征的研究,以达到对总体相应数量特征的认识;而统计学既希望通过对构成总体的全部个体的数量特征的研究(如果可能$或值得的话),以达到对总体相应数量特征的认识,同时也希望能通过对构成总体的部分个体的数量特征的研究,以达到对总体相应数量特征的认识。

3.从其研究的手段来看,数理统计主要依赖于小样本特征值统计分布的数学原理来推断总体的相应特征值;而统计学或者说推断统计学主要依赖于大样本特征值统计分布的数学原理来推断总体的相应特征值。

4.从其研究的主要范围来看,数理统计侧重于对样本数据的定量分析;而统计学不仅重视样本数据的定量分析,而且重视对所获得的总体全部数据的定量分析,同时,重视数据收集方法、数据整理方法的研究。

5.从其利用样本数据对总体进行推断的数理机理而言,概率论是其共同的基础。特别是作为统计学基本方法之一的大量观察法,其数理基础正是概率论中的大数定律;统计学中用大样本可以方便地推断出总体特征的数理基础正是概率论中的中心极限定理,而无论是大数定律还是中心极限定理也都是数理统计的根基。

6.数理统计尽管强调应用性,但是它本身还是一门数学学科,重在应用方法的数理基础的研究;统计学更侧重于对解决社会、经济等现实问题数量分析方法的研究与应用,而方法本身的数理基础的科学性研究,则由相应的理论统计学去研究,事实上,推断统计方法的数理基础的科学性研究,正是数理统计的研究范畴之一。

从上述数理统计与统计学的特点及其比较,可以清楚地看到,随着现代统计学的发展及其在社会政治经济生活中发挥作用越来越大的趋势,数理统计研究问题的理念及其方法已对统计学的发展产生重要的革命性影响,但是,数理统计与统计学毕竟是两门差异较大的学科,不可能简单地加以“统一”。

二、数理统计在统计学中的地位

数理统计与统计学是两门不同的学科,不可相互取代,也不可能像多年来有些学者提出的那样,要建立所谓的大统计,或者说融合统计学,其实质就是要把数理统计与统计学融合起来。但是其融合的直接后果就是现在某些高校所使用的统计学教材中,既有统计学的内容,也有数理统计的成分,不伦不类,细读之,其实就是数理统计的内容与统计学内容的简单拼接。这不能不说是近年来,中国统计学、统计学教材、统计教学的一大悲哀:迷失了自我,盲目地要“与西方接轨”。笔者认为要想理顺数理统计与统计学的关系,就必须对数理统计在统计学中的地位加以深入的研究。

(一)数理统计在统计思想发展中的地位

统计作为一项社会实践活动,已有几千年的历史。“统而计之”,就是人们对统计的朴素认识。随着社会生产力的不断进步,当代的统计已不圄于“统而计之”的范畴。

1.统计作为人们认识社会的最有力的武器之一,已广泛应用于社会、政治、经济、科技等众多领域,而每一个领域有其复杂多样性,若采用简单地“统”,即全面调查几乎是不可能的,但是全面地了解每一个领域的基本情况及不同领域之间的数量联系的规律性,又为现代社会管理所必需。数理统计研究问题的思路和方法,自然而然地为统计学所利用,即数理统计为现代统计学的发展点燃了解决复杂现实问题的科学思想火花——为用总体的部分去说明总体奠定了数理基础。

2.20世纪30年代以来,随着政府要有效地干预国民经济理念的形成,政府以社会经济生活直接参与者的身份出现,基于对全局数据的掌握,大大地推动了统计思想的发展,不仅投入了大量的资金对统计这支“武器”进行开发,更重要的是从立法的角度对统计行为进行规范。在当今许多国家的统计法规中,都明确地规定抽样调查在统计调查中的重要地位。比如,在我国1996年5月经修改后颁布并实施的《中华人民共和国统计法》第二章第十条就明确规定:“统计调查应当以周期性普查为基础,以经常性抽样调查为主体,以必要的统计报表、重点调查、综合分析等为补充,收集、整理基本统计资料”。而抽样调查的基本原理就基于数理统计的推断原理。可见,数理统计的推断理念在统计实践中的地位已用法律的形式确定下来。

3.作为社会经济活动主体的企业单位,在世界经济全球化、区域经济一体化的发展背景下,不仅没有足够的资金、凯时k66会员登录的技术支持从事某一方面的全面调查,有时也没有必要通过全面调查以获得生产经营方面的全面数据资料,而抽样调查就足以提供相应可靠的数据作为企业生产经营决策的依据。这也说明数理统计有着微观的现实需要,为微观经济管理活动开辟了无限广阔的前景。在微观统计应用中有着坚实的思想根基。

4.统计的理念,已不仅仅在于用历史数据描述历史的发展特征,而当代更强调通过对历史数据的收集、整理和分析,去预测未来,而这种预测的基础同样基于数理统计的原理。即从历史的时序数据中找出数据的内在数量规律性,以把握未来的走向,即数理统计的分析原理在时间序列数据预测中的作用,同样功不可没。

(二)数理统计在统计方法中的地位

随着数理统计解决现实问题的理念在统计思想中地位的确立,数理统计在统计方法中的重要地位也相应地得以确立。

1.大数定律为数理统计应用于统计学搭起了连接的纽带。大量观察法是现代统计学的基本方法之一,而大数定律又是大量观察法的基础。统计学若没有大量观察法的支撑,则统计分析中的基本指标——平均数与相对数,则失去其应有的作用和意义,可见数理统计在统计方法中的基础地位不容置疑。

2.中心极限定理为数理统计在统计学中的应用铺平了道路。用样本推断总体的关键在于掌握样本特征值的抽样分布,而中心极限定理表明 只要样本容量足够地大,得自未知总体的样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据,几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地位。3.数理统计中样本抽样分布的理论,为现代统计学中的方差分析、正交设计等方法的应用同样提供了方法上的理论保证。特别是正交设计在现实工农业生产中的作用,及其对经济的贡献已引起国外学者的高度关注。据日本某些专家估计:“(日本)经济发展中至少有10%的功劳归于正交设计。”这足见数理统计的方法在统计方法中应用的现实意义。

(三)数理统计在统计内容中的地位

统计学是一门关于如何收集、整理和分析统计数据的一门方法论科学。不管数理统计对统计思想的发展有多大的影响,也不管数理统计在统计方法中居于何种地位,数理统计在统计学中的地位还是主要体现在统计分析中的地位。数理统计对数据的收集方法与整理方法的实际影响要比其对统计数据分析方法的影响小得多。也就是说,统计学作为一门方法论科学,其研究领域要比数理统计宽广得多。试图用数理统计取代统计学的观点显然是不正确的,同样试图用大统计学取代数理统计的观点也不正确,毕竟数理统计作为一门数学学科有其自身的不可替代的特点。因此,数理统计在统计内容中的地位,也只能主要体现在统计分析方面。

1.统计数据收集方法的研究仍然是现代统计学的主要内容之一。正如前所述,在我国现阶段如何获得大量真实有效的统计数据,是我们所面临的迫切任务之一。不真实、不全面的统计数据,使国家的宏观管理"经济理论’经济模型和经济政策的统计检验,以及企业的生产经营预测、决策,都不能有效地进行。可见,“统计数据的质量是统计全部工作的生命”的观点的正确性。而数理统计在统计数据收集方面的影响仅体现在统计数据调查方式方法方面,即抽样调查如何组织实施的方式方法,在统计数据收集方法中得以突出和强调。

2.相同的原始统计数据,采用不同的整理方法所获得的整理资料可以完全不同,并由此对其采用相同的方法进行分析所得的结论,可能完全相反。这足以说明统计整理的重要性。但是数理统计在统计整理方面却难以发挥有效的作用,毕竟,数理统计研究的依据是小样本,而统计学研究的依据的是大样本。假如统计学不是以大样本或总体的全部个体为研究依据,统计学也许就真的沦为数理统计了。

3.数理统计对统计数据分析方法的影响是显著的。不仅体现在对大样本总体参数估计、非参数估计、相关与回归分析、总体分布型态的判断、一个总体参数与两个总体参数的假设检验、方差分析和正交设计等许多内容上,而且体现在描述统计学中最基本指标:平均数、相对数的计算原理等方面。也许真不可想象,若在现代统计方法的内容体系中缺少了数理统计的关于大样本的分析方法原理,将是怎样一种景象。

三、统计学传播理念的转变

对数理统计与统计学的特点作了比较研究,以及对数理统计在统计学中的地位作了分析之后,让我们再回到统计学知识传播的现实实践中来,可以更清楚地看到我们现在正在做什么、在哪些方面还需要改进、今后该怎样把工作做得更好。

(一)统计学知识传播理念的转变主要体现在如下三个方面:

1.统计是什么。这是对统计的最基本的认识,可以通过加强对统计知识的宣传达到。在现代统计工作中,尽管“统而计之”仍有非常重要的现实意义,但是在我们的统计学教学与其它途径的统计知识的传播中,绝不能仅限于此。不仅要让不同阶层的人,认识到统计对现实社会生活的巨大认识作用,而且要让他们了解统计在国家宏观管理、企业经营预测、决策,以及对经济理论#经济模型、经济政策检验中的重要性,从而使各个阶层的人民群众自觉地参与和配合各级统计机构所开展的统计调查活动,以保证统计数据的真实完整。这就要求我国必须加强统计知识普及教育及统计法规的宣传教育!开辟多途径多手段的统计知识传播途径。这是统计学传播的基础理念。

2.统计为什么,即让统计活动的直接参与者懂得为什么要这样做。显然,这是对统计学传播的较高层次要求。知道为什么要这样做!即要知道统计的原理,这并不需要所有的公民都知晓。事实上,只能是具有一定知识基础的人才可能真正理解,且其途径主要是通过高等学校的统计教学活动。由此就对高校的统计学教学理念提出了挑战:统计学课堂上应向学生教授什么。笔者从事高校统计学教学多年,认为高校统计学课堂上应向学生解释统计方法的原理。高校统计学教学课堂不应过分地强调对统计知识的宣传和如何具体地从事统计活动,而应强调重视统计方法机理教学的传播理念,但这在我国现实的高校统计学教学中并没有真正地形成。

3.怎么做统计,这是统计方法具体应用的问题。可以说当前我国高校统计学教学实质上就是教会学生如何做实际统计工作。如何收集、整理数据,如何用公式去计算某些指标等。显然,这样的工作中学生就可以胜任。而真正为什么要那样组织实施数据的调查、整理,为什么要那样计算。不仅老师介绍的不够!而且教材编写的深度也不够。

由此可见,统计知识的传播理念应大致界定在三个层面上:一是统计基本常识的传播。二是如何开展具体的统计活动。三是为什么那样开展统计活动可以达到预期的目的。不同层面的传播对象是有差别的。知道统计是什么、怎么做统计,相对于懂得为什么要那样做统计,其要求是相当低的。也许只要会记数、会写字的居委会大妈,就可以从事数据的收集工作,而会套用公式的一个中学生就可以计算服从x*2分布的统计量的样本数值。而知道为什么要这样做,没有相应的数理统计知识是万万不行的。另一方面,随着计算机的普及及统计数据处理软件的开发,利用计算机对数据进行分析已变得异常简单,甚至一个孩童都可以教会使用统计处理软件,在这种情况下。是否让学生懂得统计为什么就变得不重要了呢?正相反,在统计学的高校课堂上让学生懂得为什么就更重要了。

四、我国统计学教材改革的方向

从对统计学传播理念的不同层次的要求,及数理统计在统计学中的地位和学生的知识结构来看,改革现行高校统计学教材内容体系及教学理念势在必行。

1.去除现行统计学教材中与数理统计相重复的内容,加强关于大样本的数理统计内容,即增加大样本统计分布的数理基础的内容。

2.强调大数定律及中心极限定理内容的教学。尽管这两个定理是纯数理统计的问题,但由于其在数理统计的教学中,教师通常重视不够,因为小样本问题才是数理统计研究的主要问题,因此,可能一带而过,而它们恰恰是联系数理统计与统计学的重要纽带。因此,在统计学教材中必须增加并突出其内容。

数理统计论文范文篇7

关键词:《概率论与数理统计》教学安排教学内容教学形式

前言

《概率论与数理统计》是研究随机现象客观规律的一门学科,是全国高等院校数学以及各工科专业的一门重要的基础课程,也是全国硕士研究生入学数学考试的一个重要组成部分。该课程处理问题的思想方法与学生已学过的其他数学课程有很大的差异,因而学生学起来感到难以掌握。大多数学生感到基本概念难懂,易混淆、内容抽象复杂,难以理解、解题不得法、不善于利用所学的数学知识和数学方法分析解决实际问题。为此,笔者从教学安排、教学内容、教学形式和考核方法4个方面对《概率论与数理统计》的教学进行了研究和探讨。

一、教学内容和安排

《概率论与数理统计》的内容以及教师授课一般都存在着重理论轻实践、重知识轻能力的倾向,缺少该课程本身的特色及特有的思想方法,课程的内容长期不变,课程设置简单,一般只局限于一套指定的教材。《概率论与数理统计》课程内容主要包括3大类:①理论知识。也就是构成本学科理论体系的最基本、最关键的知识,主要包括随机事件及其运算、条件概率、随机变量、数字特征、极限定理、抽样分布、参数估计、假设检验等理论知识,这些是学习该课程必须要掌握的最重要的理论知识。②思维方法。指的是该学科研究的基本方法,主要包括不确定性分析、条件分析、公理推断、统计分析、相关分析、方差分析与回归分析等方法,这些大多蕴涵在学科理论体系中,过去往往不被重视,但实际上对于学生知识的转化与整合具有十分重要的作用。③应用方面。《概率论与数理统计》在社会生活各个领域应用十分广泛,有大量的成功实例。

因此,在课程设置上,不能只局限于一套指定的教材,应该在一个统一的教学基本要求的基础上,教材建设应向着一纲多本和立体化建设的方向发展。在教学进度表中应明确规定该门课程的讲授时数、实验时数、讨论时数、自学时数(在以前基础上适当增加学时数),这样分配教学时间,旨在突出学生的主体地位,促使学生主动参与,积极思考。

二、教学形式

1)开设数学实验课教学时可以采用以下几个实验:在校门口,观察每30s钟通过汽车的数量,检验其是否服从poisson分布;统计每学期各课程考试成绩,看是否符合正态分布,并标准化而后排出名次;调查某个院里的同学每月生活费用的分布情况,给出一定置信水平的置信区间;随机数的生成等等。通过开设实验课,可以使学生深刻理解数学的本质和原貌,体味生活中的数学,增强学生兴趣,培养学生的实际操作能力和应用能力。

2)引进多媒体教学多媒体教学与传统的教学法相比有着不可比拟的优势。一方面,多媒体的动画演示,生动形象,可以将一些抽象的内容直观地反映出来,使学生更容易理解,同时增强了教学趣味性。如在学习正态分布时,可以指导学生运用matlab软件编写程序,在图形窗口观察正态分布的概率密度函数和概率分布函数随参数变化的规律,从而得出正态分布的性质。另一方面,由于概率统计例题字数较多,抄题很费时间。制作多媒体课件,教师有更多的精力对内容进行详细地分析和讲解,增加与学生的互动,增加课堂信息量。对于教材中的重点、难点、复习课、习题课等都可制作成多媒体课件形式,配以适当的粉笔教学,这样既能延续一贯的听课方式,发挥教师的主导作用,又能充分体现学生的认知主体作用。比如在概率部分,把几个重要的离散型随机变量、连续型随机变量的分布率、概率密度、期望、方差等列成表格;在统计部分,将正态总体均值和方差的置信区间,假设检验问题的拒绝域列成表格形式,其中所涉及到的重要统计量的分布密度函数用图形表示出来。这样,学生觉得一目了然,通过让学生先了解图形的特点,再结合分位数的有关知识,找出其中的规律,理解它们的含义及联系,加深了学生对概念的理解及方法的运用,以便更容易记住和求出置信区间和假设检验问题的拒绝域。这样,不仅使学生对概念的理解更深刻、透彻,也培养了学生运用计算机解决实际问题的能力。

3)案例教学,重视理论联系实际《概率论与数理统计》是从实际生产中产生的一门应用性学科,它来源于实际又服务于实际。因此,采取案例教学法,重视理论联系实际,可以使教学过程充满活力,学生在课堂上能接触到大量的实际问题,可以提高学生综合分析和解决实际问题的能力。如讲授随机现象时,用抛硬币、元件寿命、某时段内经过某路口的车辆数等例来说明它们所共同具有的特点;讲数学期望概念时,用常见的街头用随机摸球为例,提出如果多次重复地摸球,决定成败的关键是什么,它的规律性是什么等问题,然后再讲数学期望概念在产品检验及保险行业的应用,就能使学生真正理解数学期望的概念并能自觉运用到生活中去;又如讲授正态分布时,先举例说明正态分布在考试、教育评估、企业质量管理等方面的应用,然后结合概率密度图形讲正态分布的特点和性质,让同学们总结实际中什么样的现象可以用正态分布来描述,这样能使学生认识到正态分布的重要性及其应用的广泛性,从而提高学生的学习积极性,强化学生的应用意识。

另外,也可选择一些具有实际背景的典型的案例,例如概率与密码问题、敏感问题的调查、血液检验问题等等。通过对典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法,并运用所学知识和方法去解决实际问题。

三、考核方法

考试是一种教学评价手段。现在学生把考试本身当作追求的目标,而放弃了自身的发展愿望,出现了教学中“教”和“学”的目的似乎是为了“考”的奇怪现象。有些院校概率统计课程只有理论课,没有实验课,其考试形式是期末一张试卷定乾坤,虽然有平时成绩,主要以作业和考勤为主,占的比率比较小(一般占2o),并且学生的作业并不能真实地反映学生学习的好坏,使得教师无法真正地了解每个学生的学习情况,公平合理地给出平时成绩。而这种单一的闭卷考试也很难反映出学生的真实水平。公务员之家

所以,我们首先要加强平时考查和考试,每次课后要留有作业、思考题,学完每一章后要安排小测验,在概率论部分学完后进行一次大测验。其次注重科学研究,每个学生都要有平时论文,学期论文,以此来检查学生掌握知识情况和应用能力.此外还有实验成绩。最后是期末考试,以a、b卷方式,采取闭卷形式进行考试。将这4个方面给予适当的权重,以均分作为学生该门课程的成绩。成绩不及格者.学习态度好的可以允许补考。否则予以重修。分数统计完后,对成绩分布情况进行分析,通过总体分布符合正态分布程度和方差大小判断班级的总体水平,并对每道题的得分情况进行分析,评价学生对每个知识点的掌握情况和运用能力,找出薄弱环节,以便对原教学计划进行调整和改进。总之,通过科学的考核评价和反馈,促进教学质黾不断改进和提高。

[参考文献]

数理统计论文范文篇8

传统的考核方式以“平时成绩+期末成绩”模式为主,其中,平时成绩主要依据学生出勤情况和作业给分,期末考试则主要以闭卷书面形式考查。这种考核方式对于《医药数理统计》这门课程容易出现“重理论,轻应用”、“重期末,轻平时”、“重记忆,轻理解”的现象。使得学生为应付考试,期末临阵磨枪,把精力花在概念、公式的死记硬背上,虽有可能在考试中获得高分,但在学完之后,学生依然是从“理论到理论”,不知在实际中如何应用,而学生的自主学习能力、实践能力以及通过探究性、研究性学习所得到的收获和在本课程学习过程中获得的情感体验、直接经验,特别是创新精神是无法通过一张期末试卷来体现的。使得考试与社会需要的人才模式相脱离,与过程学习相脱离,无益于学生创新素质的提高和中医药类创新人才的培养。

2推行“过程式”考核方式研究

讲课中引入”探究式”教学法,从以教师为主转变成转换到以学生为主,教师设置的探究的问题可以是从学科领域或现实生活中选择和确定研究统计案例,以小组为单位,在教学中创设一种类似于学术研究的情境,通过学生自主、独立地发现问题、实验、操作、调查、信息收集与处理、表达与交流等探索活动,有助于真正让学生获得知识、技能、情感与态度的发展,特别是探索精神和创新能力的发展。而为更好的提高教学效果,应在“探究”的过程中进行“过程式”考核方式,通过教学过程中的一系列考核方式的改革,一方面可以激发学生对《医药数理统计》这门课程学习的兴趣和热情,培养学生学习的独立性与主动性;另一方面又能培养学生对知识的融会贯通和灵活应用能力,这是培养学生创新素质的有效途径。首先,因为考核的主要依据是应使学生基础知识和基本技能不断充实,自主学习内容和运用知识能力逐步增强,更加注重学生学习效果的评价。因此在授课过程中应重点考核学生的学习态度、学风与学习的主动性、创新性,增加统计软件、实际调查和文献纠错等内容考核,加强统计理论和实践的联系,重视考查学生分析问题、解决问题的能力,提高学生综合创新素质。其次,“过程式”考核的形式应该更加多样,在探究式教学的过程中应注意对各知识点的考核,在考核过程中,根据专业和学生层次的不同,灵活采用笔试、口试、答辩式、专题报告式、论文式、实践技能操作等多种考核方式。最后除传统考核手段之外,建立统计辅助教学与考核平台,将过去仅能通过一张试卷考计算,理论推导的考核方式,改变为通过统计辅助教学与考核平台进行计算机考核的方式,提高学生动手能力,进行数据分析解决实际问题的能力,提高学生综合创新素质。

3小结

数理统计论文范文篇9

医药数理统计方法是药学专业的基础课,是数学基础课中应用性最强的课程,是研究随机现象的科学方法.它的思考方法与学生过去接触过的学科不同,因此学习它时需改变以往的思考方式.目前,延边大学药学院采用的数理统计教材《医药数理统计方法》[1]是卫生部规划教材(1999年第3版),其内容较为陈旧,方法简单,特别是随着计算机的普及与发展及在统计学中的广泛应用,使原有教材内容处于过时状态.延边大学药学院医药数理统计方法课程的教学时间仅为30学时,教师若按教材内容用传统的教学方法讲课,学生较难学到实用的统计知识和方法.为此,延边大学基础医学院数理与计算机教研室在教学中进行了多方面的改革.

1转变教育观念

利用现代化学习工具学习当今社会发展所需要的知识是时代的要求,因此应转变教育思想和更新教育观念,改变以往的教学方式、学习方式和学习内容,探索适应现代社会、经济、科技及文化发展的教育观念和人才培养模式,形成培养适合21世纪所需要人才的教学体系.医药院校的数学应以应用为主要目的,应改变以掌握基本知识、基本理论及基本方法为目的的方式,把教学重点转移到讲解数理统计学概念、思考方法、形成及应用背景等,引导学生思考数理统计学的思维特征,理解数理统计学思想,引导学生应用数理统计学方法解决实际问题,以达到学以致用的目的.学好和用好医药数理统计学并不需要高深的数学知识,而是要促使学生在学习数理统计学的时候改变思维模式,使学生从医药学的形象思维模式向数理统计学的抽象思维和逻辑推断模式转变,并结合教材中例题的讲解、学生自身实例资料的分析及作业的批阅使学生理解和掌握统计学中的基本概念、基本方法、统计符号及公式等.

2精简和更新教学内容

在教学内容方面做到突出实用性,适当地减少或减弱概率论部分的理论性和难度,以直观、趣味和易于理解的方式把概率论作为数理统计的基础知识加以介绍.在假设检验部分注意阐述数理统计方法的思想、应用的背景及应用中所需的条件,重点讲解假设检验应该如何选取原假设和备择假设,如何对得出的结论进行合理的解释;在参数估计部分着重地讲解参数估计在实际应用中的重要性、合理性及应用中应注意的问题,区间估计中置信区间的理解及单侧置信限在应用中的意义等;在方差分析部分讲清楚引进方差分析的意义、假设检验的方法对多个总体进行多次t检验时的缺点、方差分析应用的条件及合理解释检验结果等;在回归分析部分注意阐述量与量之间的关系、回归方程的理论意义及对回归方程结果在应用中的解释等.目前spss软件是国际医学论文中应用最广泛的统计软件[2],国内的大部分医学期刊也要求论文数据统计分析要应用统计软件处理,统计检验结果要用p值来表示,更要求学生了解统计软件的使用方法,做到正确使用统计软件.

3互动式的教学方法培养应用、创新型人才

传统的教学方式是知识传授型教学,即教师在课堂上灌输知识,在有限的时间内按教学大纲要求把大量的教学内容尽可能地讲授完毕,不能有效地调动学生对学习的主动性,忽视学生应用能力的发展,结果导致学生把主要精力投入到统计计算上,很难有时间去深入分析统计结果.互动式教学方法要求教师在教学中充分发挥教师的主导作用,同时让学生处于教学的中心,在加强课堂讨论的同时,由教员归纳总结,充分调动学生的学习兴趣,提高学生的主动性和创造性.统计学应用能力的培养主要指可正确选择和应用统计分析方法解决医药学科学研究和医药工作中的实际问题[3].为了避免学生滥用及错用统计方法,教师要重点讲清各种方法的适用条件及特点.在考试方法上亦采用开卷考试,使学生不再花大量时间去推敲和死记那些复杂的公式,不再难于分清和理解符号及公式.通过几年来的改革实践,发现上述教学内容、方法及手段的改革增强了学生的学习兴趣,使学生真正体会到数理统计学的内容在医药及日常生活中的应用价值,激发学生的创造性思维,取得了良好的效果.

[参考文献]

[1]刘定远.医药数理统计方法[m].第3版.北京:人民卫生出版社,1999.20.

数理统计论文范文篇10

数理统计与统计学是两门不同的学科,不可相互取代,也不可能像多年来有些学者提出的那样,要建立所谓的大统计,或者说融合统计学,其实质就是要把数理统计与统计学融合起来。但是其融合的直接后果就是现在某些高校所使用的统计学教材中,既有统计学的内容,也有数理统计的成分,不伦不类,细读之,其实就是数理统计的内容与统计学内容的简单拼接。这不能不说是近年来,中国统计学、统计学教材、统计教学的一大悲哀:迷失了自我,盲目地要“与西方接轨”。笔者认为要想理顺数理统计与统计学的关系,就必须对数理统计在统计学中的地位加以深入的研究。

(一)数理统计在统计思想发展中的地位

统计作为一项社会实践活动,已有几千年的历史。“统而计之”,就是人们对统计的朴素认识。随着社会生产力的不断进步,当代的统计已不圄于“统而计之”的范畴。

1.统计作为人们认识社会的最有力的武器之一,已广泛应用于社会、政治、经济、科技等众多领域,而每一个领域有其复杂多样性,若采用简单地“统”,即全面调查几乎是不可能的,但是全面地了解每一个领域的基本情况及不同领域之间的数量联系的规律性,又为现代社会管理所必需。数理统计研究问题的思路和方法,自然而然地为统计学所利用,即数理统计为现代统计学的发展点燃了解决复杂现实问题的科学思想火花——为用总体的部分去说明总体奠定了数理基础。

2.20世纪30年代以来,随着政府要有效地干预国民经济理念的形成,政府以社会经济生活直接参与者的身份出现,基于对全局数据的掌握,大大地推动了统计思想的发展,不仅投入了大量的资金对统计这支“武器”进行开发,更重要的是从立法的角度对统计行为进行规范。在当今许多国家的统计法规中,都明确地规定抽样调查在统计调查中的重要地位。比如,在我国1996年5月经修改后颁布并实施的《中华人民共和国统计法》第二章第十条就明确规定:“统计调查应当以周期性普查为基础,以经常性抽样调查为主体,以必要的统计报表、重点调查、综合分析等为补充,收集、整理基本统计资料”。而抽样调查的基本原理就基于数理统计的推断原理。可见,数理统计的推断理念在统计实践中的地位已用法律的形式确定下来。

3.作为社会经济活动主体的企业单位,在世界经济全球化、区域经济一体化的发展背景下,不仅没有足够的资金、凯时k66会员登录的技术支持从事某一方面的全面调查,有时也没有必要通过全面调查以获得生产经营方面的全面数据资料,而抽样调查就足以提供相应可靠的数据作为企业生产经营决策的依据。这也说明数理统计有着微观的现实需要,为微观经济管理活动开辟了无限广阔的前景。在微观统计应用中有着坚实的思想根基。

4.统计的理念,已不仅仅在于用历史数据描述历史的发展特征,而当代更强调通过对历史数据的收集、整理和分析,去预测未来,而这种预测的基础同样基于数理统计的原理。即从历史的时序数据中找出数据的内在数量规律性,以把握未来的走向,即数理统计的分析原理在时间序列数据预测中的作用,同样功不可没。

(二)数理统计在统计方法中的地位

随着数理统计解决现实问题的理念在统计思想中地位的确立,数理统计在统计方法中的重要地位也相应地得以确立。

1.大数定律为数理统计应用于统计学搭起了连接的纽带。大量观察法是现代统计学的基本方法之一,而大数定律又是大量观察法的基础。统计学若没有大量观察法的支撑,则统计分析中的基本指标——平均数与相对数,则失去其应有的作用和意义,可见数理统计在统计方法中的基础地位不容置疑。

2.中心极限定理为数理统计在统计学中的应用铺平了道路。用样本推断总体的关键在于掌握样本特征值的抽样分布,而中心极限定理表明 只要样本容量足够地大,得自未知总体的样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据,几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地位。

3.数理统计中样本抽样分布的理论,为现代统计学中的方差分析、正交设计等方法的应用同样提供了方法上的理论保证。特别是正交设计在现实工农业生产中的作用,及其对经济的贡献已引起国外学者的高度关注。据日本某些专家估计:“(日本)经济发展中至少有10%的功劳归于正交设计。”这足见数理统计的方法在统计方法中应用的现实意义。

(三)数理统计在统计内容中的地位

统计学是一门关于如何收集、整理和分析统计数据的一门方法论科学。不管数理统计对统计思想的发展有多大的影响,也不管数理统计在统计方法中居于何种地位,数理统计在统计学中的地位还是主要体现在统计分析中的地位。数理统计对数据的收集方法与整理方法的实际影响要比其对统计数据分析方法的影响小得多。也就是说,统计学作为一门方法论科学,其研究领域要比数理统计宽广得多。试图用数理统计取代统计学的观点显然是不正确的,同样试图用大统计学取代数理统计的观点也不正确,毕竟数理统计作为一门数学学科有其自身的不可替代的特点。因此,数理统计在统计内容中的地位,也只能主要体现在统计分析方面。

1.统计数据收集方法的研究仍然是现代统计学的主要内容之一。正如前所述,在我国现阶段如何获得大量真实有效的统计数据,是我们所面临的迫切任务之一。不真实、不全面的统计数据,使国家的宏观管理"经济理论’经济模型和经济政策的统计检验,以及企业的生产经营预测、决策,都不能有效地进行。可见,“统计数据的质量是统计全部工作的生命”的观点的正确性。而数理统计在统计数据收集方面的影响仅体现在统计数据调查方式方法方面,即抽样调查如何组织实施的方式方法,在统计数据收集方法中得以突出和强调。

2.相同的原始统计数据,采用不同的整理方法所获得的整理资料可以完全不同,并由此对其采用相同的方法进行分析所得的结论,可能完全相反。这足以说明统计整理的重要性。但是数理统计在统计整理方面却难以发挥有效的作用,毕竟,数理统计研究的依据是小样本,而统计学研究的依据的是大样本。假如统计学不是以大样本或总体的全部个体为研究依据,统计学也许就真的沦为数理统计了。

3.数理统计对统计数据分析方法的影响是显著的。不仅体现在对大样本总体参数估计、非参数估计、相关与回归分析、总体分布型态的判断、一个总体参数与两个总体参数的假设检验、方差分析和正交设计等许多内容上,而且体现在描述统计学中最基本指标:平均数、相对数的计算原理等方面。也许真不可想象,若在现代统计方法的内容体系中缺少了数理统计的关于大样本的分析方法原理,将是怎样一种景象。

二、数理统计与统计学的主要特点

(一)数理统计的主要特点

数理统计就是通过对随机现象有限次的观测或试验所得数据进行归纳,找出这有限数据的内在数量规律性,并据此对整体相应现象的数量规律性做出推断或判断的一门学科。概括起来有如下几方面的特点:一是随机性,就是说数理统计的研究对象应当具有随机性,确定性现象不是数理统计所要研究的内容。二是有限性,就是说数理统计据以研究的随机现象数量表现的次数是有限的。三是数量性,即数理统计以研究随机现象的数量规律性为主,而对随机现象质的研究为次。四是采用的研究方法主要为归纳法。最后,数理统计通过对小样本的研究以达到对整体的推断都具有一定的概率可靠性。用样本推断总体误差的存在是客观的,但是数理统计不仅重在研究误差的大小,还指出误差发生的可能性的大小。

从数理统计的学科特征来看,数理统计是应用数学中最重要、最活跃的学科之一。由此可见!数理统计从学科划分来说,应属于数学学科,但是其重在应用!而不是纯数学理论或方法的研究,故其采用的方法也就重在归纳法,而不是数学的演绎法。

综上所述,数理统计的主要特点可以用一句话概括为、数理统计是一门对随机现象进行有限次的观测或试验的结果进行数量研究,并依之对总体的数量规律性做出具有一定可靠性推断的应用数学学科。

(二)统计学的主要特点

统计学是一门收集、整理和分析统计数据的方法论科学,其目的在于探索数据的内在数量规律性,以达到对客观事物的科学认识。

统计学从其研究的范围来说有三大领域:数据的收集$数据的整理和数据的分析。首先,这三大领域随着统计学的不断发展,已很难分辨出哪个领域更重要些。也许有很多人认为数据的分析要相对重要些。在对1900年和1910年美国两次农业普查资料进行分析时,列宁曾指出:“全部问题,任务的全部困难在于,如何综合这些资料,才能确切地从政治上经济上说明不同种类或类型的农户的整个情况。”这足见数据整理的重要性。近年来困扰我国统计研究的并不是数据的分析方法,而是缺少充分真实有效的统计数据,造成无法用数据去检验或证实相应的经济理论、经济模型和经济政策。数据收集的重要性可见一斑。其次,统计学是一门方法论科学。长期以来,人们一直认为在这众多的方法中,统计研究的基本方法是大量观察法、统计指标法、统计分组法和模型推断法。特别是大量观察法更成为统计学最重要的基本特征方法之一,也可以说这是统计学与数理统计的根本区别之一,否则,统计学也就真的成了现代西方数理统计学了。随着统计学由早期的纯粹描述统计不断拓展为描述统计与推断统计并重,直至有的学者认为现代统计学应该以推断统计为主,描述统计为辅,暂且不论这种观点是否有不妥之处,但可足见推断统计学已在现代社会生活中起到举足轻重的作用。事实上,推断统计已成为现代统计学的基本特征之一。再次,统计学从其成为一门科学的那一天起,就把对现象数量方面的研究作为自己的基本特征,但是,同时强调要以对现象的定性认识为基础。

(三)数理统计与统计学的比较

通过上述对数理统计与统计学特点的分析,可以把数理统计与统计学的主要异同归纳为如下几方面:

1.从其研究目的来看,两者都重在揭示总体现象的数量规律性,而统计学更声称要以对总体现象的定性认识为基础。

2.从其研究的途径来看,数理统计希望通过对总体部分个体的数量特征的研究,以达到对总体相应数量特征的认识;而统计学既希望通过对构成总体的全部个体的数量特征的研究(如果可能$或值得的话),以达到对总体相应数量特征的认识,同时也希望能通过对构成总体的部分个体的数量特征的研究,以达到对总体相应数量特征的认识。

3.从其研究的手段来看,数理统计主要依赖于小样本特征值统计分布的数学原理来推断总体的相应特征值;而统计学或者说推断统计学主要依赖于大样本特征值统计分布的数学原理来推断总体的相应特征值。

4.从其研究的主要范围来看,数理统计侧重于对样本数据的定量分析;而统计学不仅重视样本数据的定量分析,而且重视对所获得的总体全部数据的定量分析,同时,重视数据收集方法、数据整理方法的研究。

5.从其利用样本数据对总体进行推断的数理机理而言,概率论是其共同的基础。特别是作为统计学基本方法之一的大量观察法,其数理基础正是概率论中的大数定律;统计学中用大样本可以方便地推断出总体特征的数理基础正是概率论中的中心极限定理,而无论是大数定律还是中心极限定理也都是数理统计的根基。

6.数理统计尽管强调应用性,但是它本身还是一门数学学科,重在应用方法的数理基础的研究;统计学更侧重于对解决社会、经济等现实问题数量分析方法的研究与应用,而方法本身的数理基础的科学性研究,则由相应的理论统计学去研究,事实上,推断统计方法的数理基础的科学性研究,正是数理统计的研究范畴之一。

从上述数理统计与统计学的特点及其比较,可以清楚地看到,随着现代统计学的发展及其在社会政治经济生活中发挥作用越来越大的趋势,数理统计研究问题的理念及其方法已对统计学的发展产生重要的革命性影响,但是,数理统计与统计学毕竟是两门差异较大的学科,不可能简单地加以“统一”。

三、统计学传播理念的转变

对数理统计与统计学的特点作了比较研究,以及对数理统计在统计学中的地位作了分析之后,让我们再回到统计学知识传播的现实实践中来,可以更清楚地看到我们现在正在做什么、在哪些方面还需要改进、今后该怎样把工作做得更好。

(一)统计学知识传播理念的转变主要体现在如下三个方面:

1.统计是什么。这是对统计的最基本的认识,可以通过加强对统计知识的宣传达到。在现代统计工作中,尽管“统而计之”仍有非常重要的现实意义,但是在我们的统计学教学与其它途径的统计知识的传播中,绝不能仅限于此。不仅要让不同阶层的人,认识到统计对现实社会生活的巨大认识作用,而且要让他们了解统计在国家宏观管理、企业经营预测、决策,以及对经济理论#经济模型、经济政策检验中的重要性,从而使各个阶层的人民群众自觉地参与和配合各级统计机构所开展的统计调查活动,以保证统计数据的真实完整。这就要求我国必须加强统计知识普及教育及统计法规的宣传教育!开辟多途径多手段的统计知识传播途径。这是统计学传播的基础理念。

2.统计为什么,即让统计活动的直接参与者懂得为什么要这样做。显然,这是对统计学传播的较高层次要求。知道为什么要这样做!即要知道统计的原理,这并不需要所有的公民都知晓。事实上,只能是具有一定知识基础的人才可能真正理解,且其途径主要是通过高等学校的统计教学活动。由此就对高校的统计学教学理念提出了挑战:统计学课堂上应向学生教授什么。笔者从事高校统计学教学多年,认为高校统计学课堂上应向学生解释统计方法的原理。高校统计学教学课堂不应过分地强调对统计知识的宣传和如何具体地从事统计活动,而应强调重视统计方法机理教学的传播理念,但这在我国现实的高校统计学教学中并没有真正地形成。

3.怎么做统计,这是统计方法具体应用的问题。可以说当前我国高校统计学教学实质上就是教会学生如何做实际统计工作。如何收集、整理数据,如何用公式去计算某些指标等。显然,这样的工作中学生就可以胜任。而真正为什么要那样组织实施数据的调查、整理,为什么要那样计算。不仅老师介绍的不够!而且教材编写的深度也不够。

由此可见,统计知识的传播理念应大致界定在三个层面上:一是统计基本常识的传播。二是如何开展具体的统计活动。三是为什么那样开展统计活动可以达到预期的目的。不同层面的传播对象是有差别的。知道统计是什么、怎么做统计,相对于懂得为什么要那样做统计,其要求是相当低的。也许只要会记数、会写字的居委会大妈,就可以从事数据的收集工作,而会套用公式的一个中学生就可以计算服从x*2分布的统计量的样本数值。而知道为什么要这样做,没有相应的数理统计知识是万万不行的。另一方面,随着计算机的普及及统计数据处理软件的开发,利用计算机对数据进行分析已变得异常简单,甚至一个孩童都可以教会使用统计处理软件,在这种情况下。是否让学生懂得统计为什么就变得不重要了呢?正相反,在统计学的高校课堂上让学生懂得为什么就更重要了。

四、我国统计学教材改革的方向

从对统计学传播理念的不同层次的要求,及数理统计在统计学中的地位和学生的知识结构来看,改革现行高校统计学教材内容体系及教学理念势在必行。

1.去除现行统计学教材中与数理统计相重复的内容,加强关于大样本的数理统计内容,即增加大样本统计分布的数理基础的内容。

2.强调大数定律及中心极限定理内容的教学。尽管这两个定理是纯数理统计的问题,但由于其在数理统计的教学中,教师通常重视不够,因为小样本问题才是数理统计研究的主要问题,因此,可能一带而过,而它们恰恰是联系数理统计与统计学的重要纽带。因此,在统计学教材中必须增加并突出其内容。